Cardinal directions for visual optic flow
نویسندگان
چکیده
As we move through our environment, the flow of deforming images on the retinae provides a rich source of information about the three-dimensional structure of the external world and how to navigate through it. Recent evidence from psychophysical [1] [2] [3] [4], electrophysiological [5] [6] [7] [8] [9] and imaging [10] [11] studies suggests that there are neurons in the primate visual system - in the medial superior temporal cortex - that are specialised to respond to this type of complex 'optic flow' motion. In principle, optic flow could be encoded by a small number of neural mechanisms tuned to 'cardinal directions', including radial and circular motion [12] [13]. There is little support for this idea at present, however, from either physiological [6] [7] or psychophysical [14] research. We have measured the sensitivity of human subjects for detection of motion and for discrimination of motion direction over a wide and densely sampled range of complex motions. Average sensitivity was higher for inward and outward radial movement and for both directions of rotation, consistent with the existence of detectors tuned to these four types of motion. Principle component analysis revealed two clear components, one for radial stimuli (outward and inward) and the other for circular stimuli (clockwise and counter-clock-wise). The results imply that the mechanisms that analyse optic flow in humans tend to be tuned to the cardinal axes of radial and rotational motion.
منابع مشابه
Cardinal axes for radial and circular motion, revealed by summation and by masking
Both electro-physiological and psychophysical studies point to the existence of detectors specialised for the analysis of optic flow. However, it is unclear whether these detectors are tuned to specific 'cardinal directions' (such as radial and circular motion), or whether they respond equally to all directions of optic-flow motion, including intermediate spiral motions. Here summation and mask...
متن کاملAdaptation to conflicting visual and physical heading directions during walking.
We investigated the role of global optic flow for visual-motor adaptation of walking direction. In an immersive virtual environment, observers walked to a circular target lying on either a homogeneous ground plane (target-motion condition) or a textured ground plane (ground-flow condition). During adaptation trials, we changed the mapping from physical to visual space to create a conflict betwe...
متن کاملVariation in the Local Motion Statistics of Real-Life Optic Flow Scenes
Optic flow motion patterns can be a rich source of information about our own movement and about the structure of the environment we are moving in. We investigate the information available to the brain under real operating conditions by analyzing video sequences generated by physically moving a camera through various typical human environments. We consider to what extent the motion signal maps g...
متن کاملA neural model for heading detection from optic flow
This paper describes a neural model developed for computing heading from optic flow caused by 3D translational egomotion. The model uses the distributed representation of optic flow directions in cortical areas MT and MSTd. Model MSTd cells are selective for specific directions of visual motion and have large receptive fields covering approximately a quarter of the visual field at different ret...
متن کاملMST neurons respond to optic flow and translational movement.
We recorded the responses of 189 medial superior temporal area (MST) neurons by using optic flow, real translational movement, and combined stimuli in which matching directions of optic flow and real translational movement were presented together. One-half of the neurons (48%) showed strong responses to optic flow simulating self-movement in the horizontal plane, and 24% showed strong responses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 9 شماره
صفحات -
تاریخ انتشار 1999